Bio-Inspired Planning and Reaching in Complex Environments
نویسندگان
چکیده
One of the hallmarks of human reaching behavior is the ability to think and generate plans for movements in complex environments. In this paper we model planning to reach for targets in space using a self-organized process of mental rehearsals of movements, and simulate the process using a redundant robot arm that is capable of learning to reach for targets in space while avoiding obstacles. The learning process is inspired by infant motor babbling, and provides self-generated movement commands that activate correlated visual, spatial and motor/proprioceptive information, which are employed to learn forward and inverse kinematic models while moving in obstacle free space. To control the arm in complex environments with obstacles, the inverse model is constrained by the visual influence of the location of obstacles to generate a purely reactive obstacle avoidance controller; while the forward model is utilized in visually planning movements when reactive obstacle avoidance is insufficient. Reach planning utilizes the forward model to recall information in order to mentally rehearse reaches that escape local minima situations that exist in the solution landscape for the purely reactive obstacle avoidance controller and achieve a path around obstacles. Perceptual information, in the form of via-points that are extracted from visual attentional shrouds around obstacles, triggers the recall of corresponding spatial regions from the forward model that were learned during motor babbling. Postures which place the end effector in each region are subsequently recalled from the many-to-one associative maps learned for the forward model, and are evaluated for comfort and distance from the planned via-point locations around the obstacles. The postures are then used by the controller to mentally rehearse arm movements from the initial configuration to the target. Simulations show that the proposed novel controller is successful in planning reaches while avoiding obstacles in environments with complex obstacle configurations. This proposed model is fault tolerant and can handle a wide range of perturbations such as joint locking and the use of tools without experiencing them during learning. The simulation results of our biologically plausible approach highlights its practical utility in applications where the environment is full of obstacles and the robot needs to possess the intelligence to avoid them while performing reaching tasks thereby ensuring safety and reliability.
منابع مشابه
Description the Design with Nature in Bio-Architecture and urban design
The relation between nature and human considers different periods. At first it was bio-utilization which degrades the value of nature as a source of energy and material. After revolution in science development and attention to the damages which they made to environment, they tried to change their look to this issue and expand the mean of relation between human and nature. Birth of such word l...
متن کاملPath Planning of Mobile Robot using Bacteria Foraging Optimization
Path planning related to mobile robots is the construction of the collision free trajectories that direct robots towards their goal. In this paper, a bio inspired approach based on the foraging behaviour of the bacteria (E-coli) has been proposed to design an optimal path for the robot. The present approach admires that the mobile robot is capable of reaching the goal by following the optimum p...
متن کاملGeomagnetic Navigation of Autonomous Underwater Vehicle Based on Multi-objective Evolutionary Algorithm
This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation syst...
متن کاملA Review on Multi Robot Cooperation Using Bio Inspired Neural Networks
Though widely discussed, multi robot cooperation is a critical and a challenging issue in today’s world. To provide proper cooperation among robots, we not only need to have the communication, but also various different factors such as path planning, searching, collision detection and avoidance, misscommunication and failure of the robots i.e. the multi robot systems must work well under robust...
متن کاملBio-Inspired Routing and Resource Management for Future Networks
Communication systems have continually played a major role in our lives. In particular in recent years, the Internet has transformed the way people interact and communicate, which has led to increased number of services and functionalities. However, with the increase in changes in network environments, more adaptive, flexible, efficient and scalable techniques are needed to enhance the operatio...
متن کامل